\(\int (a+a \sec (c+d x))^2 (e \sin (c+d x))^{5/2} \, dx\) [114]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 194 \[ \int (a+a \sec (c+d x))^2 (e \sin (c+d x))^{5/2} \, dx=-\frac {2 a^2 e^{5/2} \arctan \left (\frac {\sqrt {e \sin (c+d x)}}{\sqrt {e}}\right )}{d}+\frac {2 a^2 e^{5/2} \text {arctanh}\left (\frac {\sqrt {e \sin (c+d x)}}{\sqrt {e}}\right )}{d}-\frac {9 a^2 e^2 E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {e \sin (c+d x)}}{5 d \sqrt {\sin (c+d x)}}-\frac {4 a^2 e (e \sin (c+d x))^{3/2}}{3 d}-\frac {2 a^2 e \cos (c+d x) (e \sin (c+d x))^{3/2}}{5 d}+\frac {a^2 e \sec (c+d x) (e \sin (c+d x))^{3/2}}{d} \]

[Out]

-2*a^2*e^(5/2)*arctan((e*sin(d*x+c))^(1/2)/e^(1/2))/d+2*a^2*e^(5/2)*arctanh((e*sin(d*x+c))^(1/2)/e^(1/2))/d-4/
3*a^2*e*(e*sin(d*x+c))^(3/2)/d-2/5*a^2*e*cos(d*x+c)*(e*sin(d*x+c))^(3/2)/d+a^2*e*sec(d*x+c)*(e*sin(d*x+c))^(3/
2)/d+9/5*a^2*e^2*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticE(cos(1/2*c+1/4*Pi+1/2*
d*x),2^(1/2))*(e*sin(d*x+c))^(1/2)/d/sin(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 194, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3957, 2952, 2715, 2721, 2719, 2644, 327, 335, 304, 209, 212, 2646} \[ \int (a+a \sec (c+d x))^2 (e \sin (c+d x))^{5/2} \, dx=-\frac {2 a^2 e^{5/2} \arctan \left (\frac {\sqrt {e \sin (c+d x)}}{\sqrt {e}}\right )}{d}+\frac {2 a^2 e^{5/2} \text {arctanh}\left (\frac {\sqrt {e \sin (c+d x)}}{\sqrt {e}}\right )}{d}-\frac {9 a^2 e^2 E\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {e \sin (c+d x)}}{5 d \sqrt {\sin (c+d x)}}-\frac {4 a^2 e (e \sin (c+d x))^{3/2}}{3 d}-\frac {2 a^2 e \cos (c+d x) (e \sin (c+d x))^{3/2}}{5 d}+\frac {a^2 e \sec (c+d x) (e \sin (c+d x))^{3/2}}{d} \]

[In]

Int[(a + a*Sec[c + d*x])^2*(e*Sin[c + d*x])^(5/2),x]

[Out]

(-2*a^2*e^(5/2)*ArcTan[Sqrt[e*Sin[c + d*x]]/Sqrt[e]])/d + (2*a^2*e^(5/2)*ArcTanh[Sqrt[e*Sin[c + d*x]]/Sqrt[e]]
)/d - (9*a^2*e^2*EllipticE[(c - Pi/2 + d*x)/2, 2]*Sqrt[e*Sin[c + d*x]])/(5*d*Sqrt[Sin[c + d*x]]) - (4*a^2*e*(e
*Sin[c + d*x])^(3/2))/(3*d) - (2*a^2*e*Cos[c + d*x]*(e*Sin[c + d*x])^(3/2))/(5*d) + (a^2*e*Sec[c + d*x]*(e*Sin
[c + d*x])^(3/2))/d

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2644

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 2646

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-a)*(a*Sin[e
 + f*x])^(m - 1)*((b*Cos[e + f*x])^(n + 1)/(b*f*(n + 1))), x] + Dist[a^2*((m - 1)/(b^2*(n + 1))), Int[(a*Sin[e
 + f*x])^(m - 2)*(b*Cos[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[m, 1] && LtQ[n, -1] && (Int
egersQ[2*m, 2*n] || EqQ[m + n, 0])

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2952

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x]
 /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 3957

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[(g*Co
s[e + f*x])^p*((b + a*Sin[e + f*x])^m/Sin[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \int (-a-a \cos (c+d x))^2 \sec ^2(c+d x) (e \sin (c+d x))^{5/2} \, dx \\ & = \int \left (a^2 (e \sin (c+d x))^{5/2}+2 a^2 \sec (c+d x) (e \sin (c+d x))^{5/2}+a^2 \sec ^2(c+d x) (e \sin (c+d x))^{5/2}\right ) \, dx \\ & = a^2 \int (e \sin (c+d x))^{5/2} \, dx+a^2 \int \sec ^2(c+d x) (e \sin (c+d x))^{5/2} \, dx+\left (2 a^2\right ) \int \sec (c+d x) (e \sin (c+d x))^{5/2} \, dx \\ & = -\frac {2 a^2 e \cos (c+d x) (e \sin (c+d x))^{3/2}}{5 d}+\frac {a^2 e \sec (c+d x) (e \sin (c+d x))^{3/2}}{d}+\frac {\left (2 a^2\right ) \text {Subst}\left (\int \frac {x^{5/2}}{1-\frac {x^2}{e^2}} \, dx,x,e \sin (c+d x)\right )}{d e}+\frac {1}{5} \left (3 a^2 e^2\right ) \int \sqrt {e \sin (c+d x)} \, dx-\frac {1}{2} \left (3 a^2 e^2\right ) \int \sqrt {e \sin (c+d x)} \, dx \\ & = -\frac {4 a^2 e (e \sin (c+d x))^{3/2}}{3 d}-\frac {2 a^2 e \cos (c+d x) (e \sin (c+d x))^{3/2}}{5 d}+\frac {a^2 e \sec (c+d x) (e \sin (c+d x))^{3/2}}{d}+\frac {\left (2 a^2 e\right ) \text {Subst}\left (\int \frac {\sqrt {x}}{1-\frac {x^2}{e^2}} \, dx,x,e \sin (c+d x)\right )}{d}+\frac {\left (3 a^2 e^2 \sqrt {e \sin (c+d x)}\right ) \int \sqrt {\sin (c+d x)} \, dx}{5 \sqrt {\sin (c+d x)}}-\frac {\left (3 a^2 e^2 \sqrt {e \sin (c+d x)}\right ) \int \sqrt {\sin (c+d x)} \, dx}{2 \sqrt {\sin (c+d x)}} \\ & = -\frac {9 a^2 e^2 E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {e \sin (c+d x)}}{5 d \sqrt {\sin (c+d x)}}-\frac {4 a^2 e (e \sin (c+d x))^{3/2}}{3 d}-\frac {2 a^2 e \cos (c+d x) (e \sin (c+d x))^{3/2}}{5 d}+\frac {a^2 e \sec (c+d x) (e \sin (c+d x))^{3/2}}{d}+\frac {\left (4 a^2 e\right ) \text {Subst}\left (\int \frac {x^2}{1-\frac {x^4}{e^2}} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{d} \\ & = -\frac {9 a^2 e^2 E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {e \sin (c+d x)}}{5 d \sqrt {\sin (c+d x)}}-\frac {4 a^2 e (e \sin (c+d x))^{3/2}}{3 d}-\frac {2 a^2 e \cos (c+d x) (e \sin (c+d x))^{3/2}}{5 d}+\frac {a^2 e \sec (c+d x) (e \sin (c+d x))^{3/2}}{d}+\frac {\left (2 a^2 e^3\right ) \text {Subst}\left (\int \frac {1}{e-x^2} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{d}-\frac {\left (2 a^2 e^3\right ) \text {Subst}\left (\int \frac {1}{e+x^2} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{d} \\ & = -\frac {2 a^2 e^{5/2} \arctan \left (\frac {\sqrt {e \sin (c+d x)}}{\sqrt {e}}\right )}{d}+\frac {2 a^2 e^{5/2} \text {arctanh}\left (\frac {\sqrt {e \sin (c+d x)}}{\sqrt {e}}\right )}{d}-\frac {9 a^2 e^2 E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {e \sin (c+d x)}}{5 d \sqrt {\sin (c+d x)}}-\frac {4 a^2 e (e \sin (c+d x))^{3/2}}{3 d}-\frac {2 a^2 e \cos (c+d x) (e \sin (c+d x))^{3/2}}{5 d}+\frac {a^2 e \sec (c+d x) (e \sin (c+d x))^{3/2}}{d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 17.64 (sec) , antiderivative size = 205, normalized size of antiderivative = 1.06 \[ \int (a+a \sec (c+d x))^2 (e \sin (c+d x))^{5/2} \, dx=\frac {2 a^2 \cos ^4\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x) \sec ^4\left (\frac {1}{2} \arcsin (\sin (c+d x))\right ) (e \sin (c+d x))^{5/2} \left (-15 \arctan \left (\sqrt {\sin (c+d x)}\right ) \sqrt {\cos ^2(c+d x)}+15 \text {arctanh}\left (\sqrt {\sin (c+d x)}\right ) \sqrt {\cos ^2(c+d x)}-9 \sin ^{\frac {3}{2}}(c+d x)-10 \sqrt {\cos ^2(c+d x)} \sin ^{\frac {3}{2}}(c+d x)+9 \sqrt {\cos ^2(c+d x)} \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {3}{2},\frac {7}{4},\sin ^2(c+d x)\right ) \sin ^{\frac {3}{2}}(c+d x)+3 \sin ^{\frac {7}{2}}(c+d x)\right )}{15 d \sin ^{\frac {5}{2}}(c+d x)} \]

[In]

Integrate[(a + a*Sec[c + d*x])^2*(e*Sin[c + d*x])^(5/2),x]

[Out]

(2*a^2*Cos[(c + d*x)/2]^4*Sec[c + d*x]*Sec[ArcSin[Sin[c + d*x]]/2]^4*(e*Sin[c + d*x])^(5/2)*(-15*ArcTan[Sqrt[S
in[c + d*x]]]*Sqrt[Cos[c + d*x]^2] + 15*ArcTanh[Sqrt[Sin[c + d*x]]]*Sqrt[Cos[c + d*x]^2] - 9*Sin[c + d*x]^(3/2
) - 10*Sqrt[Cos[c + d*x]^2]*Sin[c + d*x]^(3/2) + 9*Sqrt[Cos[c + d*x]^2]*Hypergeometric2F1[3/4, 3/2, 7/4, Sin[c
 + d*x]^2]*Sin[c + d*x]^(3/2) + 3*Sin[c + d*x]^(7/2)))/(15*d*Sin[c + d*x]^(5/2))

Maple [A] (verified)

Time = 19.13 (sec) , antiderivative size = 265, normalized size of antiderivative = 1.37

method result size
default \(\frac {a^{2} \left (-60 \sqrt {e \sin \left (d x +c \right )}\, e^{\frac {5}{2}} \arctan \left (\frac {\sqrt {e \sin \left (d x +c \right )}}{\sqrt {e}}\right ) \cos \left (d x +c \right )+60 \sqrt {e \sin \left (d x +c \right )}\, e^{\frac {5}{2}} \operatorname {arctanh}\left (\frac {\sqrt {e \sin \left (d x +c \right )}}{\sqrt {e}}\right ) \cos \left (d x +c \right )+54 \sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticE}\left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right ) e^{3}-27 \sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right ) e^{3}+12 e^{3} \cos \left (d x +c \right )^{4}+40 e^{3} \cos \left (d x +c \right )^{3}-42 e^{3} \cos \left (d x +c \right )^{2}-40 \cos \left (d x +c \right ) e^{3}+30 e^{3}\right )}{30 \cos \left (d x +c \right ) \sqrt {e \sin \left (d x +c \right )}\, d}\) \(265\)
parts \(-\frac {a^{2} e^{3} \left (6 \sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticE}\left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )-3 \sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )-2 \sin \left (d x +c \right )^{4}+2 \sin \left (d x +c \right )^{2}\right )}{5 \cos \left (d x +c \right ) \sqrt {e \sin \left (d x +c \right )}\, d}+\frac {a^{2} e^{3} \sqrt {\cos \left (d x +c \right )^{2} e \sin \left (d x +c \right )}\, \left (6 \sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticE}\left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )-3 \sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )-2 \cos \left (d x +c \right )^{2}+2\right )}{2 \sqrt {-e \sin \left (d x +c \right ) \left (\sin \left (d x +c \right )-1\right ) \left (1+\sin \left (d x +c \right )\right )}\, \cos \left (d x +c \right ) \sqrt {e \sin \left (d x +c \right )}\, d}+\frac {2 a^{2} \left (-\frac {2 e \left (e \sin \left (d x +c \right )\right )^{\frac {3}{2}}}{3}-e^{\frac {5}{2}} \arctan \left (\frac {\sqrt {e \sin \left (d x +c \right )}}{\sqrt {e}}\right )+e^{\frac {5}{2}} \operatorname {arctanh}\left (\frac {\sqrt {e \sin \left (d x +c \right )}}{\sqrt {e}}\right )\right )}{d}\) \(407\)

[In]

int((a+a*sec(d*x+c))^2*(e*sin(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/30/cos(d*x+c)/(e*sin(d*x+c))^(1/2)*a^2*(-60*(e*sin(d*x+c))^(1/2)*e^(5/2)*arctan((e*sin(d*x+c))^(1/2)/e^(1/2)
)*cos(d*x+c)+60*(e*sin(d*x+c))^(1/2)*e^(5/2)*arctanh((e*sin(d*x+c))^(1/2)/e^(1/2))*cos(d*x+c)+54*(-sin(d*x+c)+
1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)*EllipticE((-sin(d*x+c)+1)^(1/2),1/2*2^(1/2))*e^3-27*(-sin(d*x
+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)*EllipticF((-sin(d*x+c)+1)^(1/2),1/2*2^(1/2))*e^3+12*e^3*c
os(d*x+c)^4+40*e^3*cos(d*x+c)^3-42*e^3*cos(d*x+c)^2-40*cos(d*x+c)*e^3+30*e^3)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.37 (sec) , antiderivative size = 769, normalized size of antiderivative = 3.96 \[ \int (a+a \sec (c+d x))^2 (e \sin (c+d x))^{5/2} \, dx=\text {Too large to display} \]

[In]

integrate((a+a*sec(d*x+c))^2*(e*sin(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[1/60*(-54*I*sqrt(2)*a^2*sqrt(-I*e)*e^2*cos(d*x + c)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(d*x +
 c) + I*sin(d*x + c))) + 54*I*sqrt(2)*a^2*sqrt(I*e)*e^2*cos(d*x + c)*weierstrassZeta(4, 0, weierstrassPInverse
(4, 0, cos(d*x + c) - I*sin(d*x + c))) - 30*a^2*sqrt(-e)*e^2*arctan(1/4*(cos(d*x + c)^2 - 6*sin(d*x + c) - 2)*
sqrt(e*sin(d*x + c))*sqrt(-e)/(e*cos(d*x + c)^2 - e*sin(d*x + c) - e))*cos(d*x + c) + 15*a^2*sqrt(-e)*e^2*cos(
d*x + c)*log((e*cos(d*x + c)^4 - 72*e*cos(d*x + c)^2 - 8*(7*cos(d*x + c)^2 - (cos(d*x + c)^2 - 8)*sin(d*x + c)
 - 8)*sqrt(e*sin(d*x + c))*sqrt(-e) + 28*(e*cos(d*x + c)^2 - 2*e)*sin(d*x + c) + 72*e)/(cos(d*x + c)^4 - 8*cos
(d*x + c)^2 - 4*(cos(d*x + c)^2 - 2)*sin(d*x + c) + 8)) - 4*(6*a^2*e^2*cos(d*x + c)^2 + 20*a^2*e^2*cos(d*x + c
) - 15*a^2*e^2)*sqrt(e*sin(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)), 1/60*(-54*I*sqrt(2)*a^2*sqrt(-I*e)*e^2*co
s(d*x + c)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(d*x + c) + I*sin(d*x + c))) + 54*I*sqrt(2)*a^2*
sqrt(I*e)*e^2*cos(d*x + c)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(d*x + c) - I*sin(d*x + c))) - 3
0*a^2*e^(5/2)*arctan(1/4*(cos(d*x + c)^2 + 6*sin(d*x + c) - 2)*sqrt(e*sin(d*x + c))*sqrt(e)/(e*cos(d*x + c)^2
+ e*sin(d*x + c) - e))*cos(d*x + c) + 15*a^2*e^(5/2)*cos(d*x + c)*log((e*cos(d*x + c)^4 - 72*e*cos(d*x + c)^2
- 8*(7*cos(d*x + c)^2 + (cos(d*x + c)^2 - 8)*sin(d*x + c) - 8)*sqrt(e*sin(d*x + c))*sqrt(e) - 28*(e*cos(d*x +
c)^2 - 2*e)*sin(d*x + c) + 72*e)/(cos(d*x + c)^4 - 8*cos(d*x + c)^2 + 4*(cos(d*x + c)^2 - 2)*sin(d*x + c) + 8)
) - 4*(6*a^2*e^2*cos(d*x + c)^2 + 20*a^2*e^2*cos(d*x + c) - 15*a^2*e^2)*sqrt(e*sin(d*x + c))*sin(d*x + c))/(d*
cos(d*x + c))]

Sympy [F(-1)]

Timed out. \[ \int (a+a \sec (c+d x))^2 (e \sin (c+d x))^{5/2} \, dx=\text {Timed out} \]

[In]

integrate((a+a*sec(d*x+c))**2*(e*sin(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int (a+a \sec (c+d x))^2 (e \sin (c+d x))^{5/2} \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \left (e \sin \left (d x + c\right )\right )^{\frac {5}{2}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^2*(e*sin(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^2*(e*sin(d*x + c))^(5/2), x)

Giac [F]

\[ \int (a+a \sec (c+d x))^2 (e \sin (c+d x))^{5/2} \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \left (e \sin \left (d x + c\right )\right )^{\frac {5}{2}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^2*(e*sin(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^2*(e*sin(d*x + c))^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int (a+a \sec (c+d x))^2 (e \sin (c+d x))^{5/2} \, dx=\int {\left (e\,\sin \left (c+d\,x\right )\right )}^{5/2}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2 \,d x \]

[In]

int((e*sin(c + d*x))^(5/2)*(a + a/cos(c + d*x))^2,x)

[Out]

int((e*sin(c + d*x))^(5/2)*(a + a/cos(c + d*x))^2, x)